0040-4039(94)02166-X

Spontaneous Cyclization of Triflates Derived from δ -Benzyloxy Alcohols: Efficient and General Synthesis of C-Vinyl Furanosides

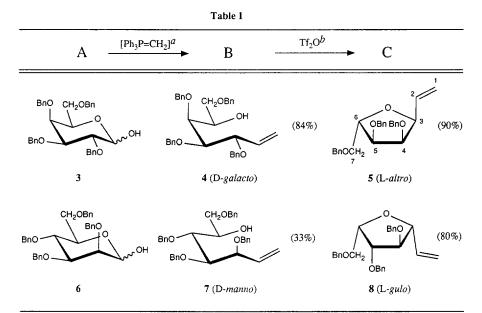
Olivier R. Martin,* Feng Yang, and Fang Xie

Department of Chemistry, State University of New York, Binghamton, NY 13902-6000

Summary: On reaction with triflic anhydride, the hept-1-enitols resulting from the Wittig reaction of tetra-O-benzyl D-hexopyranoses with $[Ph_3P=CH_2]$ lead, in one step, to 3,6-anhydro-hept-1-enitol derivatives ("C-vinyl furanosides") in high yield, by way of the participation of the benzyloxy group at C-3 with concomitant debenzylation.

The ability of benzyloxy groups to participate in ring-forming reactions by intramolecular displacements with concomitant debenzylation has long been recognized. Such process occurs readily when the reacting groups are in 1,4-relationship, thus leading to tetrahydrofuran derivatives. However, as it has been observed frequently as an undesired or unexpected reaction, $^{2-4}$ or has led in many cases to mixtures of products, the synthetic usefulness of this process remains limited. This is in contrast with the electrophile-mediated cyclization of γ -benzyloxy alkenes which constitutes a useful cycloetherification method. In the course of our studies on the synthesis of aza-sugars by aminomercuration, we found that triflates derived from open-chain alcohols bearing a benzyloxy group in 1,4-relationship with respect to the alcohol function spontaneously cyclize to the corresponding cyclic ether. In this communication, we demonstrate with several examples that this process provides an efficient method for the preparation of substituted tetrahydrofurans ("C-vinyl furanosides").

With the goal of substituting the 6-OH group in D-gluco heptenitol 1,7 the preparation of the triflate derived from 1 was attempted. The reaction led, however, exclusively to the 3,6-anhydro-heptenitol 2^9 (Scheme 1). The loss of a benzyl group and the characteristic chemical shifts of the ring carbon atoms of the


BnO
$$CH_2OBn$$
 CH_2OBn
 CH_2Cl_2 , -15°C

 $ROCH_2$
 $ROCH_2$

furanoid system unambiguously established the constitution of 2; its L-ido configuration was deduced from the comparison of its spectral data with those of other epimers (see below). The formation of 2 is clearly the result of a novel example of benzyloxy group participation: sulfonylation of 1 undoubtedly occurred to give

triflate 1a (Scheme 2) which underwent spontaneous internal displacement, with inversion at C-6, by the favorably placed alkoxy group at C-3. Dealkylation of the resulting benzyloxonium ion (1b), by transfer of the benzyl group to a nucleophile present in the medium, most probably pyridine, then led to 2.

This unexpected result prompted us to examine the ring-forming process with other heptenitols. Thus, the D-galacto and D-manno heptenitols 4 and 7¹⁰ were prepared from the corresponding tetra-O-benzyl-D-hexopyranoses 3 and 6, under essentially the same conditions as 1 (using BuLi to generate the Wittig reagent). While the Wittig reaction leading to 4 was nearly as high-yielding as that⁸ leading to 1, we were not able to improve the yield reported for the preparation of 7.6c,10 Treatment of 4 and 7 with triflic anhydride gave the 3,6-anhydro-L-altro and L-gulo-hept-1-enitol derivatives 5 and 8, respectively, in excellent yield and as single products (Table 1). Furthermore, in spite of the strong tendency of these heptenitols to undergo internal displacements, the configuration at C-6 of both 1 and 4 could be inverted effectively under Mitsunobu conditions (Table 2):¹¹ the reaction of 1 (D-gluco) and 4 (D-galacto) with benzoic acid and p-nitrobenzoic acid,¹² respectively, in the presence of triphenylphosphine and diethyl azodicarboxylate, gave the corresponding inverted benzoates which were immediately debenzoylated to provide L-ido and L-altro

^aConditions: Ph₃P+CH₃Br-/BuLi (3-5 equiv.), toluene, 25°C, 12-18h.

^bConditions: Tf₂O (2–3 equiv.), pyridine (4–6 equiv.), CH₂Cl₂, -15 –0°C, 1–6h.

heptenitols 9 and 11, respectively. On reaction with triflic anhydride, both 9 and 11 afforded the corresponding 3,6-anhydro-D-gluco- and D-galacto-hept-1-enitols in good yields. The latter case is particularly remarkable since all substituents in the final furanoid ring are cis!

Table 2 Tf_2O^b 1. Mitsunobua D E В 2. MeOH/MeO CH₂OBn BnOCH₂ CH₂OBn BnO BnO (83%)(61%)BnO BnO ÒBn ÒН . OBn OBn 1 10 (D-gluco) 9 (L-ido) BnO CH₂OBn BnOCH₂ BnO CH₂OBn OH (72%) (65%)OBn BnO BnO BnO BnO BnO όн 4 12 (D-galacto) 11 (L-altro)

 a Conditions: PhCOOH (from 1) or $pO_{2}NC_{6}H_{4}COOH$ (from 4) /Ph₃P/DEAD, ether, 25°C, 6h b See Table 1.

The reaction of diol 13, readily available from 2,3,5-tri-O-benzyl-D-arabinofuranose,¹³ provided further support for the proposed mechanism of the ring-forming process: the treatment of 13 with triflic anhydride (1.1 equiv.) gave a mixture of two similar products in nearly equal amounts. While this mixture could not be resolved by chromatography, the NMR spectra of the mixture clearly revealed that one of the components was the same product as that obtained from 1, namely L-ido epimer 2. The second product was the new D-manno epimer 14, in which all substituents of the furanoid ring are in trans relationship. Compound 2 and 14 arose from the mono-O-sulfonyl derivatives of 13 at O-6 and O-3, respectively, by way of a simple internal displacement in this case, with inversion at C-6 or C-3. Interestingly, diol 13 led to 14 as the major product under Mitsunobu conditions, presumably as the result of the greater reactivity of the allylic C-O bond in the reactive intermediate.

As with other types of C-furanosyl compounds, ¹⁴ the chemical shifts of the ring carbon atoms ¹⁵ provided the most useful probes of the configuration of the new products: starting with the all-trans system 14 (average ring-carbon chemical shift: 84.44 ppm) and ending with the all-cis system 12 (average ring-carbon chemical shift: 79.57 ppm), an examination of the chemical shift changes promoted by single epimerizations (characteristic upfield shifts of 2–5 ppm) led to the configurations shown.

In conclusion, heptenitols resulting from the Wittig reaction of tetra-O-benzyl-D-hexopyranoses with Ph₃P=CH₂ can be converted, in one step and in high yield, into C-vinyl furanosides, by taking advantage of the participation of the benzyloxy group at C-3. The C-furanosyl compounds thus obtained constitute very useful synthetic intermediates, for example for the preparation of C-nucleosides.

Acknowledgments. These investigations were supported, in part, by a grant from the National Institutes of Health (DK35766). We thank Mu-Jen Wu for the preparation of 12.

References and Notes

- 1. Gray, G.R.; Hartman, F.C.; Barker, R. J. Org. Chem. 1965, 30, 2020–2024.
- 2. Mootoo, D.R.; Fraser-Reid, B. J. Chem. Soc., Chem. Commun. 1986, 1570-1571.
- 3. Ermert, P.; Vasella, A. Helv. Chim. Acta 1991, 74, 2043–2053.
- 4. Reed, L.A., III; Huang, J.T.; McGregor, M.; Goodman, L. Carbohydr. Res. 1994, 254, 133-140.
- 5. Dehmlow, H.; Mulzer, J.; Seilz, C.; Strecker, A.R.; Kohlmann, A. *Tetrahedron Lett.* **1992**, *33*, 3607–3610. A few examples of high-yielding tetrahydrofuran-ring formation are reported in this reference.
- (a) Rychnovsky, S.D.; Bartlett, P.A. J. Am. Chem. Soc. 1981, 103, 3963–3964. (b) Reitz, A.B.; Nortey, S.O.; Maryanoff, B.E.; Liotta, D.; Monahan, R., III J. Org. Chem. 1987, 52, 4191–4202. (c) Nicotra, F.; Panza, L.; Ronchetti, F.; Russo, G; Toma, L. Carbohydr. Res. 1987, 171, 49–57.
- 7. Compound 1 was prepared in 92% yield from 2,3,4,6-tetra-O-benzyl-D-glucose (see ref. 8). The best yields were obtained using phenyllithium (instead of butyllithium) to generate the Wittig reagent.
- 8. (a) Pougny, J.R.; Nassr, M.A.M.; Sinaÿ, P. *J. Chem. Soc., Chem. Commun.* **1981**, 375–376. (b) Lancelin, J.-M.; Pougny, J.-R.; Sinaÿ, P. *Carbohydr. Res.* **1985**, *136*, 369–374.
- 9. All new compounds were fully characterized by spectral data and microanalysis or mass spectrometry.
- 10. Nicotra, F.; Perego, R.; Ronchetti, F.; Russo, G.; Toma, L. Carbohydr. Res. 1984, 131, 180-184.
- 11. The success of the displacement under Mitsunobu conditions could be attributed to the fact that the leaving group is charged and forms an ion-pair with the nucleophile: the "external" nucleophile thus compete effectively with the internal one.
- 12. Dodge, J.A.; Trujillo, J.I.; Presnell, M. J. Org. Chem. 1994, 59, 234–236.
- 13. Boschetti, A.; Nicotra, F.; Panza, L.; Russo, G. J. Org. Chem. 1988, 53, 4181-4185.
- 14. Wright, B.; Hughes, L.R.; Qureshi, S.S.; Davidson, A.H., Magn. Res. Chem. 1988, 26, 1062-1067.
- 13C-NMR data (90 MHz, CDCl₃); & C-1-7 (all attributions verified by HETCOR experiments): (2) 118.8, 135.3, 81.64, 83.19, 81.89, 78.84, 68.39; (5) 118.13, 134.91, 81.94, 78.79, 79.29, 79.85, 70.03; (8) 117.1, 137.1, 85.09, 87.37, 83.02, 80.03, 68.44; (10) 118.64, 133.68, 82.63, 84.44, 84.38, 82.35, 70.60; (12) 118.04, 136.12, 80.82, 80.31, 78.71, 78.44, 69.99; (14) 116.92, 136.65, 83.43, 88.10, 84.90, 81.34, 70.27.